Programming with Evidence

The introduction to an introduction to Agda

Uma Zalakain
Formal Methods group, University of Glasgow

Basque Center for Applied Mathematics
November 23, 2021



= second year PhD student at the Formal Methods group at
University of Glasgow

* machine verification of typed process calculi:
using proof assistants to model typed concurrency languages
and to verify their meta-theory

= programming languages theory, concurrency theory,
type theory, distributed systems



Yesterday: Zermelo-Fraenkel Set Theory

= a foundation for mathematics

» untyped, x € A is a proposition

= elements can belong to different sets

= a set is fully characterised by its elements
* primitives: set operations (U, N)

= predicate logic



: Martin-Lof Type Theory

= also a foundation for mathematics

= typed, x : Ais a judgment

= an element has a unique type

= a type is not characterised by its elements

= primitives: datatypes and functions

= propositions as types (1 and ¥ model predicate logic)

= constructive: a programming language!



Propositions as Types

* propositions are (proof-relevant) types
= proofs are programs
= evidence is data

= constructivism:
existence requires the construction of a witness



Propositions as Types

proposition type

1 Zero

T One

ANB AXxB

AV B AWB

A= B A—B

—A A — Zero

Vx.Px | I(x:A)(Px)
Ix.Px | Z(x:4)(Px)



Interactive Proof Assistants

= system checks proofs for correctness

= system helps the user to construct those proofs interactively
= interactive proving becomes interactive programming

= requires less trust, easier to refactor with confidence

= educational value — instant feedback for the student

= easy to reuse: shared library of definitions and proofs

= proofs compute!

= 3 |ot of fun!



Interactive Proof Assistants

= Coq: based on the Calculus of Inductive Constructions, heavy
use of tactics

= Lean: based on the Calculus of Inductive Constructions, small
kernel, support for quotient types

= |dris2: based on Quantitative Type Theory, supports linearity
annotations, focuses on compilation

= Agda: very close to Martin-Lof Type Theory, handles proof
terms directly



= developed mainly at Chalmers, Sweden
= clean syntax, unicode support

= based on dependent pattern matching

= mostly used in:
= Programming Language Theory
= Category Theory
= Homotopy Theory



Dependent Types

= types contain value-level expressions
= allow correct-by-construction problem modelling

= pre and post conditions can be tightened
using types as specifications

= empty types rule out impossible cases



About the tutorials

= Monday to Thursday
= Oh total
= interactive — an emacs buffer

= available online:
https://umazalakain.github.io/agda-bcam/

* recorded for posterity (including mistakes)


https://umazalakain.github.io/agda-bcam/

About the tutorials

= simple and composite types

= unicode and mixfix operators
" interactive programming

= record types

= Curry-Howard correspondence
= dependent function types

» indexed data types

= parametrised modules

= with abstraction

= automated evidence-providing solvers



Bibliography

= Introduction to Agda, Andreas Abel, 8th Summer School on
Formal Techniques (SSFT'18) Menlo College, California, US

= Computer Aided Formal Reasoning, Thorsten Altenkirch,
2010

» A Practical Agda Tutorial, Péter Divianszky and Ambrus
Kaposi, 2013



