
Programming with Evidence

The introduction to an introduction to Agda

Uma Zalakain
Formal Methods group, University of Glasgow

Basque Center for Applied Mathematics
November 23, 2021



About me

second year PhD student at the Formal Methods group at

University of Glasgow

machine verification of typed process calculi:

using proof assistants to model typed concurrency languages

and to verify their meta-theory

programming languages theory, concurrency theory,

type theory, distributed systems



Yesterday: Zermelo-Fraenkel Set Theory

a foundation for mathematics

untyped, x ∈ A is a proposition

elements can belong to different sets

a set is fully characterised by its elements

primitives: set operations (∪, ∩)

predicate logic



Today: Martin-Löf Type Theory

also a foundation for mathematics

typed, x : A is a judgment

an element has a unique type

a type is not characterised by its elements

primitives: datatypes and functions

propositions as types (Π and Σ model predicate logic)

constructive: a programming language!



Propositions as Types

propositions are (proof-relevant) types

proofs are programs

evidence is data

constructivism:

existence requires the construction of a witness



Propositions as Types

proposition type

⊥ Zero

> One

A ∧ B A× B

A ∨ B A ] B

A =⇒ B A→ B

¬A A→ Zero

∀x .P x Π (x : A) (P x)

∃x .P x Σ (x : A) (P x)



Interactive Proof Assistants

system checks proofs for correctness

system helps the user to construct those proofs interactively

interactive proving becomes interactive programming

requires less trust, easier to refactor with confidence

educational value — instant feedback for the student

easy to reuse: shared library of definitions and proofs

proofs compute!

a lot of fun!



Interactive Proof Assistants

Coq: based on the Calculus of Inductive Constructions, heavy

use of tactics

Lean: based on the Calculus of Inductive Constructions, small

kernel, support for quotient types

Idris2: based on Quantitative Type Theory, supports linearity

annotations, focuses on compilation

Agda: very close to Martin-Löf Type Theory, handles proof

terms directly



Agda

developed mainly at Chalmers, Sweden

clean syntax, unicode support

based on dependent pattern matching

mostly used in:

Programming Language Theory

Category Theory

Homotopy Theory



Dependent Types

types contain value-level expressions

allow correct-by-construction problem modelling

pre and post conditions can be tightened

using types as specifications

empty types rule out impossible cases



About the tutorials

Monday to Thursday

9h total

interactive — an emacs buffer

available online:

https://umazalakain.github.io/agda-bcam/

recorded for posterity (including mistakes)

https://umazalakain.github.io/agda-bcam/


About the tutorials

simple and composite types

unicode and mixfix operators

interactive programming

record types

Curry-Howard correspondence

dependent function types

indexed data types

parametrised modules

with abstraction

automated evidence-providing solvers



Bibliography

Introduction to Agda, Andreas Abel, 8th Summer School on

Formal Techniques (SSFT’18) Menlo College, California, US

Computer Aided Formal Reasoning, Thorsten Altenkirch,

2010

A Practical Agda Tutorial, Péter Diviánszky and Ambrus

Kaposi, 2013


